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ABSTRACT Averaged event-related poteniial (EBP) data
pecovied from the hwwman scalp reveal electrosucephalo-
gfﬁi}hiﬁ {BEG) activity that is reliably time-locked and phase-
locked to experimental events. We report here the application
of a method based on information theery that decomposes ons
or more ERPs recorded at multiple sealp sensers inio a som
of componenis with fived scalp distributions and sparsely
sctivated, maximally independent time courses. Independent
component analysis ICA) decomposes ERP dats into a name
per of components equal to the number of sensors. The derived
components have distinct but not necessarily orthogonal scalp
projections. Unlike dipole-fitting methods, the aigorithm does
ot model the locations of their genersiors in the head. Unlike
methods that remove second-order correlations, such as prin.
cipal component analysis (PCA), ICA also minimizes higher-
order dependencies. Applied to detected—and undetected—
target ERPs from an auditory vigHanece experiment, fhe
algorithm derived ten components that decompoesed each of
the major response peaks into ene or more ICA components
with velatively simple scalp distributions. Three of these
compenents were active only when the subjeet detected the
targets, three other components only when ihe target went
undetected, and one in both cases. Three additionsl compo-
nents acconnted for the steady-state brain response to a 39-Hz
background. click train. Major features of the decomposition
proved robust across sessions and changes in sensor number
aad placement. This method of ER¥ analysis can be used to
compare responses from multiple stimulf, task cenditions,
and sabject states.

Although the locations of the brain areas generating eveni-
related potentials (ERPs} cannot be uniquely determined by
scalp recordings from any number of channels (1}, several
methods have been proposed for decomposing evoked re-
Sponses into activations of distinct neural sources. Most of
these also attempt to locate the active areas, by assuming either
that they have a known or simple spatial configuration (2) or
that generators are restricted to z small subset of possible
focations and orientations (3). Other methods based on rota-
tions of principal components use optimization criteria not
directly related to brain anatomy and physiclogy. These meth-
ods may assume that each response component has the same
time course of activation in every experimental condition (4).
All these methods use second-order spatiotemporal correla-
tions to perform the decomposition.

Here we report a statistical method for decomposing one or
more event-related brain responses into a sum of components
with spatially fixed scalp distributions and maximally indepen-
dent ({though possibly overlapping) time courses. Indepen-
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dence requirss the ahsence of higher-order ag well as second-
order correlations between the time courses. Independence,
therefore, is a stronger condition than decorrelstion and, in
particular, is not satisfied by decomposition inte principal
components by principal component analysis (PCA).

Although the neural mechanisms that generaite ERFPs are
not known, the assumptions underlying the application of the
independent component analvsis (ICA) algorithm (5) to ERP
data are generally compatible with a widely assumed model
Anatomical and physiological studies have shown that sensory
perception and processing occur in multiple cortical arsas, as
revealed in many current brain imaging studjes (6}, Averaged
ERPs evoked by sensory stimuli and recorded from the scalp
are thought to be generated in conjunction with synchroncus
activity in radially oriented pyramidal cells in the activated
areas. Because volume conduction through the cerebrospinal
fluid, skull, 2nd scalp is thought to be linear, sensory ERPs are
assumed to sum brief and relatively spatially stable potentials
associated with synchronous activation of neuropil in each
stimulated area,

Actlvity in neuronal fibers connecting cortical arsas does not
produce macroscopic fields visible from the scalp. Thus the
activity undeilving sensory evoked responses has a saltatory
character; individual features of sensory ERPs index discrete
stages within onie or more paralle! streams of sensory processing,
edch stage involving potentials generated it one or more cortical
areas. However, the scalp distributions of these generators may
overlap in time and space, causing the ERP topography to shift
continuously and making decomposition into spatially fixed ac-
tivations difficult. For example, i two fixed dipole-like sources in
anterior and posterior cortex were 0 have spatially overlapping
activations with a small delay between them, the scalp potentials
they generate would have the appearance of a wave sweeping
{rom front to back on the scalp.

‘When subjects process sensory signals for their meaning or task
relevance, later features appear in the ERP whose spatial scalp
patierns are often inconsistent with an origin in sensory cortex.
These are believed to index the later cognitive processing of
relevant stimulus attributes or information within frontal, infe-
rior, or possibly widespread cortical areas, after this information
is first extracted in easly sensory areas. A subject’s preexisting
level of arcusal and atiention to the stimuli can also affect the
strength of early evoked responise components (7).

TCA yields data decompositions consistent with the standard
view of ERP genesis outlined above, since the spatially stable
and sparsely active components sum to the observed mulb
tichanne! responses. ICA determines whet spatially fixed and
iemporally independent component activations compose an
observed Hime-varying response, without atterapting to directly
specify where in the brain these activations arise. Each ICA

Abbreviations: EEG, electroencephalographic; ERP, sventrelated
potential; ICA, imdependent component analysis; PCA, principal
component analysis; S8R, steady-state response.
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component is specified by a fixed lnear spatial filter that
determines z time cowrse of activation during each response
condition, plus a fized pattern of sirengths at each of the scalp
electrodes. Data from & electrodes can be reconstructed as the
sum of the N independent componenis.

Previously, we showed that the JCA algorithm can be used
to separate neural activity from recording and muscle artifacts
in spontaneous electroencephalographic (EEG) data and re-
ported its use for tracking changes in alertness (8). Here, we
use a computationally more efficient version of the algorithm
to decompose rtelatively brief evoked brain responses inic
temporally independent components,

THE ICA ALGORITEM

The ICA algorithm we use (5, 9) (Fig. 1) is based on an
“infomax” neural network (10, 1), It finds, by stochastic
gradient ascent, a matrix, W, which maximizes the entropy
(12), H(), of an ensemble of “sphered” (zero-mean) input
vectors 1%}, linearly transformed and sigmoidally compressed
(u = Wz, ¥ = g(u)). The “unmixing” matrix W performs
component separation, while the sigmoidal nonlinearity 20)
provides necessary higher-order statistical information. Spher-
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T, 1. Schematic averview of [CA of EEG data. (A4) ([pper} Averaged {or single} EEG epochs, %, recorded from multip}
fo frain an “unmizing” weight matrix, W, so as to maximize the entropy of the nonlinearly trensformed output, gfWxl, (Lower} After trainin
of the trained weight matrix, W, ave linsar spatiai filters decomposing the input data into the independent activities o

Proc, Matl. Acad. Scf. US4 94 (1997;

ing of the input data {13} {x. = 53, where 8 = 2 {x };‘T}*E;‘g)
speads convergence,

W ig then initialized to the idemity matrix (I) and iterativel,
adiusted using small batches of data vectors (normally 1 Qr
more} drawn randomly from {x} without substitution, acegpd.
ng to

HY) e
P WOW o= 2 (T4 W, {1

d
AW =g

where & is the learning rate (nermally less than 6.01) and vector
% has elements § = (6/0u)ln(dy:/ 9w, The (WTW) “napural
gradient” term in the update equation (14, 15) avoids matrix
inversions and speeds convergence by normalizing the variance
in all directions.

We use the logistic nonlinearity, g{w;) = (1 + exp(—u)y,
which gives a simple update rule, §; = 1 — 2y, and biases the
alporithm toward finding sparsely activated or super-Gaussian
independent components with positive kurtosis {17, consonans
with the assumption that ERPs are compased of one or more
overlapping series of brief activations within spatially fixed brain
networks performing separable stages of stimulus information
ptocessing. The algorithm is able (o accurately decompose sums
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of the product of W and the input data, ¥, are the activation waveforms of the ICA. components, while columns of the inverse weight matrix, W
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Fr, 2. Pecompesition of an ERP dats set. {(4) Averaged evoked responses at 14 scalp channels from one subject in a sustained auditory
detection experiment (23) to detected (blue iraces, 209 epochs) and undetected (red traces, 81 epochs) siow-gnset noise-barst targets. (B} Activation
wave forms of the resuliing 14 1A companenis during the detected (biue traces) and undetected (red traces) response epochs. Seven componenis
{ICA-1 to ICA-7) are predominantly activated for a period of 50300 ms during one or the other response. Three more ICA components (ICA-8
10 ICA-18) compase the auditory SSR (22) to a click train presented throughout the experiment at one-eighth the EEG sampling rate. The remaining
four ICA components {ICA-11 o ICA-14) presumably sum activity of multiple weak brain and extra-brain sources,

of components with skewed distributions even without making
use of nonlinearities specilically tailored to them (5}

The ICA algorithm is easily implemented and computation-
ally efficient. The present implernentation doss not require
matriy inversions, making it practical for vse on data from a
hundred or more channels. The number of time points needed
for the method may be as few as several times the number of
recording channels, which in turn must be at least equal fo the
aumber of components to be separated. The rows of the output
data matrix, u, are the activation waveforms of the ICA
components, while the columns of the inverse matriz, (W8)~},
of the overall transformation, WS, give the projection strengths
of the respective components onto the scalp sensors. The data
accounted for by the ith component are the outer product,
(WS Ly, of the ith component activation with the ith column
of the inverse matrix. Scaling information is distributed be-
tween the activation waveforms, w;, and the mapg, (W8)™
hence relative component strengths can be compared only by
means of their projections (WS); ;. Note that care must be
taken in interpreting decompositions of data sets in which the
channel means are far from the baseline means. The ICA
algorithm we use is one of a family of algorithms that exploit
independence to perform blind separation (9, 14, 15, 17-21).

Application to Evoked Response Decomposition. The ICA
algorithm was applied to two 14-channel, Ls {312-point)
averaged ERPs time locked to detected and undetected tar-
Rets, respectively, presented in an experiment in which the
#ibject responded by pressing a bution each time he heard a
Woak, slow-onset noise-burst [mean rate, 10/min; duration,
350 ms; rise time, 150 ms; intensity, & decibel (dB) sensation
level] embedded in a continuous (62-dB) noise background
tontaining a 3%-Hz click train producing a steady-state re-
Spomse (S8R (22). Target nolse-bursts were presented in half
the intervals between brief nontarget tonss (50 ms, 72 4B, 568

Hz, stimmjus-onset asynchrony 2-4 s). Further details have
been reported slsewhers (23).

EEG data were coliected from 13 scalp electrodes referred o
the right mastoid, and from a bipolar diagonal electrooculo-
graphic placement with.a sampling rate of 312.5 Hz and an analog
pass band of 0.1-100 Hz. During the 28-min session, the subject
experienced varisbly increasing drowsiness while his target de-
fection rate declined from 100% to 40%. After rejecting tdals
containing electrooculographic (EOG} potentials larger than 70
1V, brain responses to detected and undetected targets were
averaged separately, giving two 312-point ERPs.

ICA decomposition was performed simultaneously on all
624 time points of both ERPs by using Matiab 421 on a Sun
HyperSparc 125-MHz processor. The learning batch size was
16, Initial learning rate, s, was G.006. Learning rate was
gradually reduced to 1079 during 50 training Herations taking
7 s of computer time. The input data are available via http with
a package of Matlab routines for performing the analysis.!

RESULTS

The two responsss to detected and undetected targets (Fig.
2ZA) contained the standard auditory response peaks NI, P2,
and N2, although the N1 peak was indistinet, most probably
because of the long rise time of the noise-burst stimulus and
the variable noise background. As expected from sleep studies
of auditory evoked responses (24), the P2 and N2 peaks were
larger and had lomger latencies in response to undetected
targets. The detected-target response alse had a parietal P3
component {quite small in this subject}, and both responses
contained a robust 39-Hz SSR in all channels. The EOG

fThe evoked response data and a coliection of Matiab routines for
performing the analysis are available via hitpy//www.onlsalkedu/
~aott/ica-download-form.himl
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channel showed some residual ocular activity spreading into
frontal sites (ses, e.z., Fpz) Absolute correlations between
channeis averagad 0.604 {range: 0.001 10 0.987).

The ICA algorithm was used to simultaneously decompose
the two 1-s ERPs into 14 ICA components whose activaiion
waveiorms are shown in Fig. 25, Alithough the alporithm used
no temporal sequence information, seven of the ICA compo-
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nenis (ICA-1 to ICA-7) were active in 2 single 50- 14 300.p,
interval in one of the response conditions. One of ghegé
{ICA-4) was active in both conditions. Three mdre ica
components (ICA-8 to ICA-10) were predominantly periogs,
at the 39-Hz 3SR driving rate. Absolute residual cortelation,
between activation waveforms of these 10 ICA componeny
averaged 0.034, ranging from 0.0001 to 0.143. Projectien o
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Fro. 3. Scalp distributions of the ICA cornponenis. () Projected activity of components ICA-1 to ICA-4 (colored traces) superimposed on (2
scalp wave forms of the detected-target response (black traces) together with interpolated topographic maps of the component projections (35#
Component ICA-2 (green traces} accounts for the central parietal positivity near 450 ms {labeled P3) as well as the concurrent prefrontal positivity

at Fpz, whereas the central negativity near 400 ms (labeled NZ) includes the activity of component FCA-4 [red traces) which has = differe
digtribution {map scaling = § uV}. (B) Projecred scalp activity of components ICA-4 to TCA-T (colored traces) superimposed on the sca

1t scalp
P wave

forms of the undetected-target response {black traces). The positive central peak near 300 ms {labeled P2J iz uccounted for by a single componen!

ICA-4 {red waces), whereas the succeeding frontal negativity (Iabeled N2J is decompased by the algorithm into three other components
10 $CA-7) having central, fronial, and periocutar topographies, respectively (map sealing + 17 oV}, (C) The A algorithm decomposes the
auditory SSR in the detected-target response into three components (ICA-8 to ICA-10) derived from the detected-target ERP (Fig, 24y by av
39 successive 25.6-ms (8-point) ERP time segments. The leftmost traces show the whole S8R at all 14 channels, the right traces, the project

(ICA-S

39-Hz
graging
ad Hme

wave forms and scalp projections {scaled individually) of the three YCA& components. The largest component, ICA-B, has a bilateral fmntméﬁ}pﬁf‘aé
scalp distribution, as expected (26}, while component HCA-9 has a bilateral parietal scalp distribution and eomponent 1¢A-10 projects mainly ©

BEGG and prefrontal channels. {0} Time courses and scalp topographies of corresponding ICA-2 components obtained in separate decom;

posiiens

of detected-target responses in two separate sessions from two subjects {right columns) and from the grand-mean detected-target raspcnsé for I3
subjects (left column), Note ihe nearly identical time courses (right traces} and scalp maps.
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these 10 componenis onto the scalp array accounted for 96.8%
of total response variance. Four remaining ICA components
1CA-11 to ICA-14) had higher residual correlations (mean
(.003, range 0.009 to £.207) and more complex scalp maps {not
shown), suggesting they accounted mainly for residual EEG
sad ccular and muscls activity.

Fig. 3.4 and B shows projections of the first seven compo-
nents to selected scalp electrodes. The detected-target P2 and
73 peaks and the undetected-target P2 were accounted for by
single ICA components, while the algorithm decompesed the
N2 peak in each response into two or more [CA componenis.
Maps of the individual component scalp projections contained
gne of two spatial extrema and clearly distinguished compo-
gents having central, frontal, and periocular foct, even when
these appeared to form a single broad peak in the response
waveforms at some sites (e.g., ICA-3 to ICA-7). Componeat
1CA-2 accounted for both the detected-target P3 waveform at
site Pz and the paralle! late negafivity at site Fpz. A component
with simifar time course and topography was found for other
subjects in the experiment (Fig. 3D). Component ICA-4
accounted for much of the P2 and early-N2 complex in the
detected-target response, but only the central-P2 peak in the
undetected-target response.

Fig. 3C shows averaged single-cycle SSRs computed by
averaging all S8R cycles in the detected-target ERF and in the
scalp projections of the three periodic ICA components. S5R
waveforms for all 14 channels are superimposed. Above each
of the three ICA S5R components is the map associated with
each component. The map of the largest component (ICA-8)
strongly resembled the topography of the whole SSR af its
amplitude peak (not shown), Components ICA-9 and ICA-10
accounted for differences in SSR topography at other time

oints.

P Seability of the Decomposition. Nearly identical ICA com-
ponents were recovered from evoked responses collected on
different days from the same subject, and similar ICA com-
ponents from different subjects in the same experiment (Fig.
AD). The activation waveforms and scalp maps of the ICA
components with largest projected activities were relatively
robust o changes in initial weights, the number of training
conditions, and even the aumber and placement of electrodes.
For example, decomposing the data in Fig. 24 by using
arbitrary subsets of 11 of the 14 channels gave components
whose activations and scalp projections eorrelated 0.9 or above
with ICA components 1, 4, 5, 6, & and 9 of Fig. 25.

ICA decompesitions of electric and magnetic evoked re-
sponses to a variety of stimuli from several experiments
{unpublished) proved shmilar in character and stability. The
algorithm is particularly effective at detecting common re-
sponse topegraphy in multiple response conditions and at
quantifying differences between conditions in activation
strength of multiple components.

Relation to Traditional Peak Apalysis. ERF components
usually are identiffed with individual event-related response
peaks {e.g., N1, P2, N2, etc.} which were first supposed to
fepresent the activities of brain areas involved in discrete
stages of information processing. However, even the peaks of
2 response waveform may sum the spatially and temporally
Overiapping activities from two or morc brain areas with
different tirne courses of activation (27). When this happens,
the scalp topography of the response appears to move con-
tinuously even when the brain locations of the active genera-
W13 are fixed, produsing different peak latencies at each scalp
Site, This is incompatible with the assumption that each peak
Bpresents a single response componsnt arising in a fixed brain
drea. ICA accounts for channels differences in ERFP peak
latencies by decomposing the activity under sach peak into two
o more 1CA components, sach havmg a spatially fized scalp
?Gp{}nr phy

Proc. Naf. Acad. Sci. USA 94 (1997) 16983

Relation te PCA. Another Hpear transformation method
previously proposed for ERF decomposition (4), PCA, finds
orthogonal directions of greatest variance in the data, whereas
ICA finds nearly temporally independent (not just uncorre-
lated) components whose maps may be nonorthogona! {Fig.
1B}. Principal components of data generated by temporally
sparse and independent, but spatially nonorthogonal, séurces
will be linear combinations of activity in all the sources,
whereas [CA components of the data will individually identify
the farger sources (28). The proposed Varimax extension of the
PCA method rotates the PCA vectors to maximize the variance
of their activation waveforms (4}. However, the relevance of
this criterion to ERP genesis is unclear. Applying PCA to the
ERP data in Fig. 24, either alone or followed by Varimax
rotation, produced components active throughout both re-
spomses (unpublished} with minimal correspondence 1o the
ICA components. When evoked brain activity arises through
temparally distinct or partially overlapping activations of in-
dependently active neural populations, then ICA appears to be
a more appropriate method for separating their contributions
to scalp data.

DISCUSSION

The exploratory use of ICA decomposition for ERP analysis
is based on three assumptions: {{) that summation at scalp
electrodes of potentials arising in different brain areas is linear;
(i) that ERPs are largely the sum of relatively brief activations
in a restricted set of spatially stable brain areas, networks, or
neural pepulations; and {#) that the time courses of activation
are largely temporally independent, The first two assumptions
appear reasonable. The third assumption limits the decompo-
sition to temporally independent components.

To explore the strengths and limitations of the method, we
ran a number of numerical simulations in which 60(-point
signals recorded from the cortex of a patient during prepara-
tion for operation for epilepsy were projected to simulated
scalp electrodes through a three-shell spherical model (28, 29).
We used electrocorticographic data in these simulations as a
plausible best approximation to the temporal dynamics of the
unknown ERP brain generators. Results confirmed that the
ICA algorithm could accurately identify the activation wave-
forms and scalp topographies of relatively large and more
temporally independent simulated sources, even in the pres-
ence of a large number of small and temporally independent
simulated sources.

However, given simulated ERP activity arising from sepa-
rate brain generators whose time courses of activation were
substantially correlated, the algorithm parsed the resulting
continuously varying scalp responses into distributed activity
within overiapping subsets of the simulated sources {28).
Similarty, 3SR components ICA-8 and ICA-9 (Fig. 3C) col-
lected synchronous bifateral SSR activity instead of splitting it
into components with left- and right-sided topegraphies, and
the neural populations generating the activities accounted for
by two spatially overlapping components, for example 1CA-4
and ICA-5 (Fig. 3B), might not be disjoint, since their scaip
distributions are so similar. More generally, given data sum-
ming components (however defined) that are not temporally
independent, spatially fixed, or sparsely activated, or whose
number is not the same as the number of data channels, the
algorithm will not reproduce the criginal component distribu-
tion; and other linear blind separation algorithms may preduce
somewhat different resulis.

The range of ERF components that can be separated by the
algorithm is illustrated by the single broad component (ICA-
23, accounting for the posterior P3 response to detected targets
as well as the accompanying anterior negativity (Fig. 34) and
the three near-periodic ICA components (ICAS8, ICA-9, ICA-
{3 that together accounted for 95.3% of the total S8R (Fig.
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3¢ This ICA decomposition of the auditory 38R into three
spatially fixed components contrasted sharply with a previ-
ously proposed interpretation that the nonstationary S8R
refiects a moving crest of activity sweeping through cortex
every 25 ms {303 By itself, however, ICA cannot be used 1o
decide between these or other source models {26, 314

CONCLUSIONS

ICA decomposition opens a new and potentially useful window
into complex event-related brain data that can complement
other analysis technigues. Further research will be requirad to
fuily assess the value and limitations of temporal independence
as a segregation criterion. Biind separation by ICA decompo-
sition appears promising for multidimensional measurement
of the effects of experimental variables on eleciric and mag-
netic evoked-response components representing rapid and
discrets stages of brain information processing, particulasly
when these overlap in scalp distribution. The method may be
especially effective for comparing the activations of brain
response components that are differentially activated in sev-
eral related stimuius and cognitive task conditions. Although
it may be difficult to locate ICA components within the brain
on the basis of their time courses and scalp projections, ICA
decomposition might nonetheless prove useful for preprocess-
ing data prior to applylng scurce localization algorithms. ICA
decomposition may be uscful as well for observing eveni-
related changes in the spatial structure of correlated ongoing
EEG activity in multiple brain areas (32-36). The methed
should be equally applicable to magnetoencephalographic
(MEQ) data, and it can be generalized to track changes in the
spatial structure of BEEG or MEG activity in different brain
states (8).

We acknowledge ¥. 8, Elliott and M. Inlow for help in collecting and
processing the data, A, Dale for suppiying the head model, and T.-W.
Lee, S, Hillyard, L. Anilo-Vento, J. Hansen, and M. McKeown for
discussions and assistance with graphies. This report was supported by
grants to 3.M. znd T.J.S. from the Office of Naval Research, and to
T3S, from the Howard Hughes Medical Institute.
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